Studies on a Steroidal Plant-growth Regulator. Part 26.t Stereoselective Construction of the Brassinolide Side-chain: New Practical Syntheses of Brassinolide Analogues from Hyodeoxycholic Acid \ddagger

Wei-Shan Zhou, ${ }^{*, a}$ Liang-Fu Huang, ${ }^{2}$ Li-Qiang Sun ${ }^{b}$ and Xin-Fu Pan ${ }^{b}$
 200032, China
${ }^{\text {b }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, China

High stereoselectivity in an osmium tetroxide-catalysed asymmetric dihydroxylation of the 5β -cholan-22-en-24-oate 1b has been achieved and the (22R,23S)-22,23-dihydroxycholanoate 2b has been used as the key intermediate for syntheses of brassinolide analogues.

A number of useful methods for construction of the side-chain of brassinolide, a plant growth regulator, have been described. ${ }^{1}$ Unfortunately, the osmium tetroxide catalysed dihydroxylation of the ($22 E$)-alkenic compound produces the unnatural ($22 S, 23 S$)-isomer as the major product, ${ }^{2}$ particularly when a 24 -alkyl substituent is present [($24 S$) natural configuration]. However, very recently, we have found that dihydroxylation of the $(22 E, 24 R)$ - and $(22 E, 24 S)$-methyl steroid unsaturated sidechain by the osmium tetroxide-catalysed asymmetric method ${ }^{3}$ affords the natural isomer as the major product. ${ }^{4}$ As an extension of the work on the dihydroxylation of ($22 E$)-alkenic compounds, we applied this new methodology to the hyodeoxycholate 1, producing the ($22 R, 23 S$)-22,23-diol 2 with high diastereoselectivity (at least 4:1). ${ }^{5}$ It is particularly noteworthy that when osmium tetroxide catalysed dihydroxylation of 1 b was carried out without the cinchona alkaloid, a $1: 8$ mixture of the ($22 R, 23 S$)-diol 2 b and $(22 S, 23 R)$-diol 3 b was obtained (Scheme 1). ${ }^{6}$

Scheme 1 Reagents: Dihydroquinidine p-chlorobenzoate, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}^{\mathbf{t}} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v}), \mathrm{OsO}_{4}$ (cat.)
\dagger Part 25. W. S. Zhou and L. F. Huang, Tetrahedron, 1992, 48, 1837. \ddagger Hyodeoxycholic acid $=3 \alpha, 6 \alpha$-dihydroxycholan- 24 -oic acid.
Acronymns: DMAP, 4-(dimethylamino)pyridine; PCC, pyridinium chlorochromate; PDC, pyridinium dichromate; PPTS, pyridinium toluene-p-sulfonate; THF, tetrahydrofuran.

In order to construct the brassinolide side-chain, the ($22 R, 23 S$)-diol 2 b was first protected with 2,2-dimethoxypropane as an acetonide 4b, which could be used as starting material for the side-chain elaboration.

Diastereoselective Construction of the Brassinolide and 25Methylbrassinolide Side-chains (Scheme 2).-The acetonide 4b was treated with $\mathrm{LiBH}_{4}-\mathrm{Pr}^{\mathrm{i}} \mathrm{MgCl}^{7}$ to give the alcohol 5b in 86% yield, oxidation of which with PCC gave the ketone 6 a in 91.5% yield. The Wittig reaction of compound 6a with $\mathrm{Ph}_{3}(\mathrm{Me})$ PI provided compound 7 a in 89% yield, which was hydrogenated in the presence of palladium on charcoal in ethyl acetate followed by treatment with $\mathrm{HCl}-\mathrm{MeOH}(2.5 \%)$ to give a $4: 1$ mixture of the products $(22 R, 23 R, 24 S)-8$ a and ($22 R, 23 R, 24 R$)-9a which were easily separated by column chromatography on silica gel. The overall yield of these two steps was 82%. Treatment of compounds 8a and 9a with 2,2 dimethoxypropane gave the acetonides $10 a^{8}$ and 11a in almost quantitative yield. The five-step overall yield from compound 4b to 10 a and 11 a was $c a .46 \%$ and $c a .11 \%$ respectively. Selective deprotection of the $3 \alpha, 6 \alpha-\mathrm{bis}$ (methoxymethyl) groups ${ }^{9}$ of compound 7a gave the $3 \alpha, 6 \alpha$-diol 14 a in 80% yield. Treatment of compound $14 a$ with PDC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by acid treatment afforded the new brassinolide 15 a (41% yield). The conversion of compound 10a into brassinolide 12a and typhasterol 13a is known. ${ }^{1 g}$

Treatment of compound $\mathbf{4 b}$ with $\mathrm{Bu}^{t} \mathrm{Li}$ in THF gave the ketone 6 b in 84% yield. The required 25 -methylacetonide 10b used as the key intermediate for a synthesis of 25 -methylbrassinolide and compound 11b were obtained from ketone 6b in a ratio of 3:2 through intermediates $\mathbf{7 b}, \mathbf{8 b}$ and $\mathbf{9 b}$, with the same conditions employed for 6a-10a. The overall yield from 4b to products 10 b and 11 b was $c a .34$ and $c a .23 \%$ in five steps, respectively. Selective removal of the $3 \alpha, 6 \alpha$-bis(methoxymethyl) groups ${ }^{9}$ of compound 7 bb provided the $3 x, 6 a$-diol 14 b (82.3% yield). In the same way as described for the preparation of compound 15a, compound 15b, which was isolated from the kidney bean (Phaseolus vulgaris), ${ }^{11}$ was obtained from compound 14 b in 38% yield. The conversion of compound 10 b into the 25 -methylbrassinolide $\mathbf{1 2 b},{ }^{12}$ which is a more potent plant growth regulator than brassinolide, and 25 -methyltyphasterol 13b is known. ${ }^{10}$

Diastereoselective Construction of the Demethylated Brassinolide Side-chain (Scheme 3).-Reaction of compound 4b with MeLi followed by dehydration of the resulting tertiary alcohol 16 with $\mathrm{MeSO}_{2} \mathrm{Cl}-\mathrm{Et}_{3} \mathrm{~N}$ in the presence of a catalytic amount of DMAP ${ }^{13}$ produced compound 17 in 87% yield. Finally, selective deprotection of the $3 \alpha, 6 \alpha-$ bis(methoxymethyl) groups ${ }^{9}$

9a $\mathrm{R}=\mathrm{H}$ 9b $R=M e$

11a $R=H$ 11b $R=M e$

13a $R=H$
13b $R=M e$

8a $R=H$
8b $R=M e$

10a $R=H$
10b $\mathrm{R}=\mathrm{Me}$

12a $\mathrm{R}=\mathrm{H}$
12b $R=M e$

7a $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{1}=\mathrm{H}$
7b $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{1}=\mathrm{Me}$

14a $R^{1}=H$
14b $R=M e$

15a $R=H$
15b $\mathrm{R}=\mathrm{Me}$

Scheme 2 Reagents: i, $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, p-\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{ii}, \mathrm{LiBH}_{4}-\mathrm{Pr}^{\mathrm{i}} \mathrm{MgCl}, \mathrm{THF} ; \mathrm{iii}, \mathrm{PCC}-\mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{iv}, \mathrm{Bu} \mathrm{LLi}^{\prime}, \mathrm{THF} ; \mathrm{v}, \mathrm{Ph} \mathrm{P}_{3}(\mathrm{Me}) \mathrm{I}, \mathrm{Bu}{ }^{\prime} \mathrm{OK}$, PhH ; vi, $\mathrm{Pd}-\mathrm{C}(10 \%), \mathrm{H}_{2}, \mathrm{EtOAc}$, then $\mathrm{HCl}-\mathrm{MeOH}(2.5 \%)$; vii, $\mathrm{PPTS}, \mathrm{Bu}{ }^{\mathrm{r}} \mathrm{OH}$; viii, $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{HCl}-\mathrm{MeOH}(2.5 \%)$
followed by catalytic hydrogenation of the resulting compound 18 yielded the known compound 19, m.p. $199-200^{\circ} \mathrm{C}$ (lit., ${ }^{10}$ $202-203{ }^{\circ} \mathrm{C}$) in ca. 80% yield in two steps. The overall yield of the four-step synthesis of 19 is $c a .69 \%$. Compound 19 could be converted into the demethylated brassinolide $20,{ }^{14}$ which has almost the same activity as brassinolide, and the demethylated typhasterol 21 by a known procedure. ${ }^{10}$

Experimental

M.p.s were determined on a Büchi 535 instrument and are
uncorrected. IR spectra were recorded on Shimadzu 440 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian XL$200(200 \mathrm{MHz})$ spectrometer, using CDCl_{3} as solvent and TMS as an internal standard (J values in Hz). Mass spectra were run on a JMS-01U spectrometer. High-resolution mass spectra were recorded with a Finnigan MAT 8430 spectrometer. The optical rotation was measured on Autpol III polarimeter. Elemental analyses were performed by the Analytical Department of the Shanghai Institute. The usual work-up means that the extract was washed with $\mathrm{HCl}(5 \%)$ (or saturated $\left.\mathrm{NaHCO}_{3}\right)$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$, and then concentrated under reduced

Scheme 3 Reagents: i, MeLi; ii, $\mathrm{MeSO}_{2} \mathrm{Cl}^{-\mathrm{Et}_{3} \mathrm{~N}, ~ D M A P ~(c a t .), ~}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, PPTS, Bu'OH; iv, $\mathrm{Pd}-\mathrm{C}(10 \%), \mathrm{H}_{2}, \mathrm{EtOAc}$
pressure. Flash column chromatography was performed on silica gel $H(10-40 \mu)$. Light petroleum refers to the fraction boiling in the range $60-90^{\circ} \mathrm{C}$.

Methyl (22R,23S)- and (22S,23R)-22,23-Dihydroxy-3a, 6α-bis-(methyoxymethyl)-5ß-cholan-24-oate 2b and 3b.-To a wellstirred mixture of dihydroquinidine para-chlorobenzoate (46.5 $\mathrm{mg}, 0.1 \mathrm{mmol}$), potassium ferricyanide ($198 \mathrm{mg}, 0.6 \mathrm{mmol}$), potassium carbonate ($83 \mathrm{mg}, 0.6 \mathrm{mmol}$) and osmium tetroxide ($0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{Bu}^{t} \mathrm{OH} ; 0.05 \mathrm{~cm}^{3}, 2.5 \times 10^{-3} \mathrm{mmol}$) in $\mathrm{Bu}^{t} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\left[1: 1(\mathrm{v} / \mathrm{v}), 4 \mathrm{~cm}^{3}\right]$ at room temp., was added compound 1 b ($98 \mathrm{mg}, 0.2 \mathrm{mmol}$) in one portion. ${ }^{10}$ The reaction mixture was stirred at room temp. for 24 h , after which it was concentrated to dryness under reduced pressure and the residue was extracted with ethyl acetate ($20 \mathrm{~cm}^{3}$) and worked-up in the usual way. The mixture was separated by column chromatography (light petroleum-acetone, 10:1) to afford compound 3b ($18 \mathrm{mg}, 17 \%$) and $\mathbf{2 b}$ ($73 \mathrm{mg}, 70 \%$).

Compound 2b, amorphous solid, $[\alpha]_{\mathrm{D}}^{26}+14.44$ (c 0.72 , CHCl_{3}) (Found: C, 65.9; H, 9.7. $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{8}$ requires $\mathrm{C}, 66.13 ; \mathrm{H}$, $9.57 \%) ; m / z 527\left(\mathrm{M}^{+}+1\right), 509\left(\mathrm{M}^{+}-\mathrm{OH}\right)$ and $494\left(\mathrm{M}^{+}-\right.$ $\mathrm{MeOH}) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1740(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.65(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.91(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.00(3 \mathrm{H}$, d, J 6.2, 21-H), $3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52(1 \mathrm{H}$, $\mathrm{m}, 3 \beta-\mathrm{H}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.89(1 \mathrm{H}, \mathrm{d}, J 4.3,22-\mathrm{H}), 3.92(1$ $\mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}), 4.11(1 \mathrm{H}, \mathrm{d}, J 4.3,23-\mathrm{H}), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 4.70 and 4.72 (each 1 H , each d, J6.8, $\mathrm{OCH}_{2} \mathrm{O}$).

Compound 3b, amorphous solid; $[\alpha]_{\mathrm{D}}^{26}-5.94$ (c 1.985, CHCl_{3}) (Found: $\mathrm{C}, 65.8 ; \mathrm{H}, 9.6 . \mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{8}$ requires $\mathrm{C}, 66.13$; $\mathrm{H}, 9.57 \%$); $m / z 527\left(\mathrm{M}^{+}+1\right), 494\left(\mathrm{M}^{+}-\mathrm{MeOH}\right), 445\left(\mathrm{M}^{+}-\right.$ $2 \mathrm{MeOH}) ; \quad v_{\max }($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1740(\mathrm{C}=\mathrm{O})$;
$\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.68(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.91(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H})$, 1.01 ($3 \mathrm{H}, \mathrm{d}, J 6.8,21-\mathrm{H}), 3.39$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.52 ($1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}$), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{Me}$), 3.92 ($1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}$), $3.94(1 \mathrm{H}, \mathrm{d}, J 4.0,22-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{s}, 23-\mathrm{H}), 4.61(2 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{O}$), 4.70 and 4.73 (each 1 H , each d, J6.8, $\mathrm{OCH}_{2} \mathrm{O}$).

Methyl (22R,23S)-22,23-Isopropylidenedioxy-3 $\alpha, 6 \alpha$-bis(meth-oxymethyl)-5 β-cholan- 24 -oate $\mathbf{4 b}$.-To a solution of compound $\mathbf{2 b}(1.578 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added 2,2dimethoxypropane ($8 \mathrm{~cm}^{3}$) and $p-\mathrm{TsOH}(50 \mathrm{mg})$ and the mixture was stirred for 2 h at room temp. Work-up followed by chromatography (light petroleum-EtOAc 15:1) afforded the acetonide $\mathbf{4 b}(1.610 \mathrm{~g}, 95 \%)$ as an amorphous solid; $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 1760(\mathrm{C}=\mathrm{O})$ (Found: C, 67.7, H, 9.2. $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{8}$ requires $\mathrm{C}, 67.84, \mathrm{H}, 9.61 \%$) $m / z 566\left(\mathrm{M}^{+}\right), 551\left(\mathrm{M}^{+}-\mathrm{Me}\right)$ and $534\left(\mathrm{M}^{+}-\mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.68(3 \mathrm{H}, \mathrm{s}, 18-$ $\mathrm{H}), 0.95(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.5,21-\mathrm{H}), 1.40$ and 1.46 ($2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), 3.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.50(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.94(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H})$, $4.25(2 \mathrm{H}, \mathrm{s}, 22,23-\mathrm{H}), 4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.71$ and 4,73 (each 1 H , each d, J6.8, $\mathrm{OCH}_{2} \mathrm{O}$).
(22R,23R)-22,23-Isopropylidenedioxy- $3 \alpha, 6 \alpha-b i s(m e t h o x y-$ methyl)-5ß-cholestan-24-ol $\mathbf{5 b}$.-To a stirred solution of LiBH_{4} ($21 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) was added a solution of $\operatorname{Pr}^{\mathrm{i}} \mathrm{MgCl}\left(2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in THF; $3.0 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. This mixture was cooled to $-25^{\circ} \mathrm{C}$ and compound $\mathbf{4 b}(450 \mathrm{mg}$, 0.8 mmol) in THF ($5 \mathrm{~cm}^{3}$) added dropwise via a syringe. After being stirred for a further 1 h at $-25^{\circ} \mathrm{C}$, the reaction mixture was quenched by careful addition of $\mathrm{HCl}(5 \%)$. Work-up, followed by purification on a silica gel column (light petroleumEtOAc 10:1) gave compound 5b (397 mg, 86\%) as an amorphous solid; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1140,1100$ and 1050 (Found: $\mathrm{C}, 70.7, \mathrm{H}, 10.5 . \mathrm{C}_{34} \mathrm{H}_{60} \mathrm{O}_{7}$ requires $\mathrm{C}, 70.31 ; \mathrm{H}$, 10.41%) $; m / z 566\left(\mathrm{M}^{+}+1-\mathrm{Me}\right), 565\left(\mathrm{M}^{+}-\mathrm{Me}\right), 549\left(\mathrm{M}^{+}\right.$ - OMe), $507\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.64$ (3 $\mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.91(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 0.97(6 \mathrm{H}, \mathrm{d}, J 6.5,26-\mathrm{H}, 27-\mathrm{H})$, 1.39 and $1.40(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), $3.12(1 \mathrm{H}, \mathrm{m}, 24-\mathrm{H}), 3.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.77$ and $3.78(1 \mathrm{H}$, each d, each $J 8.5,22-\mathrm{H}), 4.03$ and $4.14(1 \mathrm{H}$, each d, each $J 8.5,23-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.67$ and $4.72(2 \mathrm{H}$, each 1 H , each d, $J 6.8, \mathrm{OCH}_{2} \mathrm{O}$).
(22R,23S)-22,23-Isopropylidenedioxy-3 $\alpha, 6 \alpha$-bis(methoxy-methyl)-5 β-cholestan-24-one 6a.-To a stirred suspension of PCC (310 mg) and $\mathrm{NaOAc}(100 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added compound 5 ($260 \mathrm{mg}, 0.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 cm^{3}) and the mixture was stirred for 24 h at room temp. Workup followed by column chromatography (light petroleumEtOAc, 15: 1) provided the ketone 6 ($237 \mathrm{mg}, 91.5 \%$) as an amorphous solid; $[\alpha]_{\mathrm{D}}^{25}-25.05\left(c 0.455, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ $1710(\mathrm{C}=\mathrm{O}), 1140,1100$ and $1040(\mathrm{C}=\mathrm{O})$ (Found: $\mathrm{C}, 69.4 ; \mathrm{H}$, 10.0. $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{O}_{7} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 69.47 ; \mathrm{H}, 10.12 \%$); m/z 517 $\left(\mathrm{M}^{+}-\mathrm{OCH}_{2} \mathrm{OMe}\right), \quad 507\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.65(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.91(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.5$, $21-\mathrm{H}), 1.07(3 \mathrm{H}, \mathrm{d}, J 6.8,26-\mathrm{H}), 1.14(3 \mathrm{H}, \mathrm{d}, J 7.0,27-\mathrm{H}), 3.15(1$ $\mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52(1 \mathrm{H}, \mathrm{m}$, $3 \beta-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}), 4.13(2 \mathrm{H}, \mathrm{s}, 22,23-\mathrm{H}), 4.63(2 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{O}$), 4.67 and 4.72 (each 1 H , each d, $J 6.8, \mathrm{OCH}_{2} \mathrm{O}$).
(22R,23S)-22,23-Isopropylidenedioxy-3 $\alpha, 6 \alpha$-bis(methoxy-methyl)-25-methyl-5 β-cholestan-24-one 6b.-To a stirred solution of compound $\mathbf{4 b}(1.3 \mathrm{~g}, 2.5 \mathrm{mmol})$ in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ was added slowly via a syringe a solution of $\mathrm{Bu}^{t} \mathrm{Li}\left(1.7 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in heptane; $1.6 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under argon and the mixture was kept at $-78^{\circ} \mathrm{C}$ for 5 min . A further portion of $\mathrm{Bu}^{t} \mathrm{Li}(0.8$ cm^{3}) was added to the reaction mixture, which was stirred for 10 min, and then quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$. Work-up followed
by chromatography (light petroleum-EtOAc, 30:1) gave the ketone $\mathbf{6 b}\left(1.14 \mathrm{~g}, 84 \%\right.$) as an amorphous solid; $[\alpha]_{\mathrm{D}}^{25}+11.93$ (c $1.02, \mathrm{CHCl}_{3}$) (Found: $\mathrm{C}, 71.2 ; \mathrm{H}, 10.25 . \mathrm{C}_{35} \mathrm{H}_{60} \mathrm{O}_{7}$ requires C, $70.9 ; \mathrm{H}, 10.2 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1700,1140,1100$ and 1040 $(\mathrm{C}-\mathrm{O}) ; m / z 593\left(\mathrm{M}^{+}+1\right), 531\left(\mathrm{M}^{+}-\mathrm{OCH}_{2} \mathrm{OMe}\right)$ and 507 $\left(\mathrm{M}^{+}+\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.63(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.91$ ($3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}$), 0.97 ($3 \mathrm{H}, \mathrm{d}, J 5.9,21-\mathrm{H}$), 1.22 ($9 \mathrm{H}, \mathrm{s}, 25-\mathrm{Me}, 26-$ $\mathrm{H}, 27-\mathrm{H}), 1.37$ and $1.43(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), $3.36(3 \mathrm{H}, \mathrm{s}$, OMe), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.52(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{m}, 6 \beta-$ H), $4.33(2 \mathrm{H}, \mathrm{s}, 22,23-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.67$ and 4.72 (each 1 H , each d, $\mathrm{J} 6.8, \mathrm{OCH}_{2} \mathrm{O}$).
(22R,23R)-22,23-Isopropylidenedioxy-3 α, 6α-bis(methoxy-methyl)-24-methylene-5 5 -cholestane 7a.-A mixture of $\mathrm{Ph}_{3} \mathrm{PC}$ $\mathrm{H}_{3} \mathrm{I}(1.2 \mathrm{~g}, 3 \mathrm{mmol})$ and $\mathrm{Bu}^{t} \mathrm{OK}(330 \mathrm{mg}, 3 \mathrm{mmol})$ in dry benzene ($10 \mathrm{~cm}^{3}$) was stirred under argon for 1 h at room temp. and then ketone 6 ($270 \mathrm{mg}, 0.47 \mathrm{mmol}$) in benzene $\left(5 \mathrm{~cm}^{3}\right)$ was added and the mixture stirred for 1.5 h . The resulting solid was filtered off and the solvent removed to give the crude product, which was purified by chromatography (light petroleumEtOAc, 20:1) to afford compound 7 a ($239 \mathrm{mg}, 89 \%$) as an amorphous solid; $[\alpha]_{\mathrm{D}}^{25}+10.09$ ($c 0.515, \mathrm{CHCl}_{3}$) (Found: C, $73.0 ; \mathrm{H}, 10.7 . \mathrm{C}_{35} \mathrm{H}_{60} \mathrm{O}_{6}$ requires $\mathrm{C}, 72.88 ; \mathrm{H}, 10.48 \%$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}) ; m / z 577\left(\mathrm{M}^{+}+1\right), 575\left(\mathrm{M}^{+}-1\right)$, $561\left(\mathrm{M}^{+}-\mathrm{Me}\right)$ and $515\left(\mathrm{M}^{+}-\mathrm{OCH}_{2} \mathrm{OMe}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.62(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.91(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.0$, $21-\mathrm{H}), 1.07$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,26-\mathrm{H}$), 1.10 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.7,27-\mathrm{H}$), 2.31 $(1 \mathrm{H}, \mathrm{m}, 25-\mathrm{H}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50(1 \mathrm{H}$, $\mathrm{m}, 3 \beta-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{d}, J 8.5,22-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}), 4.20(1 \mathrm{H}$, d, $J 8.5,23-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.67$ and 4.72 (each 1 H , each d, $\left.J 6.8, \mathrm{OCH}_{2} \mathrm{O}\right), 5.01(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$ and $5.08(1 \mathrm{H}, \mathrm{s}$, $28-\mathrm{H}$).
(22R,23R)-22,23-Isopropylidenedioxy-3 $\alpha, 6 \alpha$-bis(methoxy-methyl)-25-methyl-5ß-cholestane 7 b .-The Wittig reaction was carried out as for compound 6a using the ketone 6b (510 mg , 0.86 mmol), $\mathrm{Ph}_{3}(\mathrm{Me})$ PI ($2.02 \mathrm{~g}, 5 \mathrm{mmol}$), ButOK ($560 \mathrm{mg}, 5$ mmol) and dry benzene ($20 \mathrm{~cm}^{3}$). Work-up gave the title compound 7b ($441 \mathrm{mg}, 87 \%$) as an amorphous solid; $[\alpha]_{\mathrm{D}}^{25}$ +28.56 (c 1.96, CHCl_{3}) (Found C, 73.1; H, 10.6. $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{6}$ requires $\mathrm{C}, 73.18 ; \mathrm{H}, 10.58 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}) ; m / z$ $576\left(\mathrm{M}^{+}+1-\mathrm{Me}\right), 529\left(\mathrm{M}^{+}-\mathrm{OCH}_{2} \mathrm{OMe}\right), 183,153$ and 139; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.59(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.91(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.01$ ($3 \mathrm{H}, \mathrm{d}, J 5.8,21-\mathrm{H}$), $1.10(9 \mathrm{H}, \mathrm{s}, 25-\mathrm{CH}, 26-\mathrm{H}, 27-\mathrm{H}$), 1.38 and $1.45(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), $3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(3 \mathrm{H}, \mathrm{s}$, OMe), $3.50(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{d}, J 9.1,22-\mathrm{H}), 3.90(1 \mathrm{H}$, $\mathrm{m}, 6 \beta-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{d}, J 9.1,23-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.67$ and 4.72 (each 1 H , each d, $\left.J 6.8, \mathrm{OCH}_{2} \mathrm{O}\right), 5.20(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$ and 5.24 ($1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H}$).
(22R,23R)-22,23-Isopropylidenedioxy-5 β-ergostane- $3 \alpha, 6 \alpha$-diol 10 a and (22R,23R)-22,23-Isopropylidenedioxy-5 β-campestane$3 \alpha, 6 \alpha$-diol 11 a .-To a solution of compound $7 \mathrm{a}(100 \mathrm{mg}, 0.17$ mmol) in $\mathrm{EtOAc}\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Pd}-\mathrm{C}(10 \% ; 20 \mathrm{mg})$ and the mixture was hydrogenated for 3 h at room temp., after which the catalyst was filtered off, the solvent removed and the residue dissolved in $\mathrm{HCl}-\mathrm{MeOH}\left(2.5 \% ; 5 \mathrm{~cm}^{3}\right)$ and left for 24 h at room temp. Work-up followed by separation on a silica gel column afforded compounds 9 a ($13 \mathrm{mg}, \mathrm{CHCl}_{\mathbf{3}}-\mathrm{MeOH}, 30: 1$) and $\mathbf{8 a}$ ($51 \mathrm{mg}, \mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1$).

Compound $8 \mathrm{a}(51 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}\left(0.2 \mathrm{~cm}^{3}\right)$ and $p-\mathrm{TsOH}(2 \mathrm{mg})$ at room temp. for 20 min after which work-up followed by chromatography (light petroleum-EtOAc, 1:1) furnished the title compound 10a in almost quantitative yield.

In the same manner, the acetonide 11a was obtained from compound 9a.

Compound 10a, m.p. $189-190^{\circ} \mathrm{C}$ (lit., ${ }^{8} 190-190.9^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{26}$
+23.41 ($c 0.82, \mathrm{CHCl}_{3}$) (Found: C, 74.6; $\mathrm{H}, 11.2$. $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{4}$. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 74.50 ; \mathrm{H}, 11.09 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{OH})$, $1230(\mathrm{OH})$ and $1030(\mathrm{C}-\mathrm{O}) ; m / z 490\left(\mathrm{M}^{+}\right), 475\left(\mathrm{M}^{+}-\mathrm{Me}\right), 419$ $\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right), 171,142$ and $99 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.64$ ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}$), 0.84 ($3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}$), 0.89 ($6 \mathrm{H}, \mathrm{d}, J 8.2,26-\mathrm{H}$, $27-\mathrm{H}), 0.94(3 \mathrm{H}, \mathrm{d}, J 7.0,24-\mathrm{Me}), 0.97$ ($3 \mathrm{H}, \mathrm{d}, J 5.2,21-\mathrm{H}$), 1.34 and $1.37(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), $3.62(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H})$, $3.72(1 \mathrm{H}$, dd, $J 8.6,4.2,23-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{d}, J 8.6,22-\mathrm{H})$ and 4.06 ($1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}$).

Compound 11a, amorphous solid; $[\alpha]_{\mathrm{D}}^{26}+11.95$ (c 0.435, $\left.\mathrm{CHCl}_{3}\right)\left(\mathrm{M}^{+}+1-\mathrm{Me}, \quad 476.3868 . \quad M, \quad 476.3865\right)$; $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1230$ and 1030; m/z $489\left(\mathrm{M}^{+}-1\right), 475$ $\left(\mathrm{M}^{+}-\mathrm{Me}\right), 419\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right), 171,142$ and $99 ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.64(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,24-\mathrm{Me}), 0.81(3$ $\mathrm{H}, \mathrm{d}, J 6.6,26-\mathrm{H}), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.6,27-\mathrm{H}), 0.9(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H})$, $0.96(3 \mathrm{H}, \mathrm{d}, J 5.9,21-\mathrm{H}), 1.34$ and $1.38(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), $3.55(1 \mathrm{H}, \mathrm{dd}, J 6.9,9.3,23-\mathrm{H}), 3.62(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{d}, J$ $6.9,22-\mathrm{H})$ and $4.06(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H})$.
(22R, 23R)-22,23-Isopropylidenedioxy-25-methyl-5 β-ergo-stane-3 $3,6 \alpha$-diol 10b and (22R,23R)-22,23-Isopropylidenedioxy25 -methyl- 5β-campestane- $3 \alpha, 6 \alpha$-diol 11 b .-In the same manner as described for the preparation of compounds 10a and 11a, compound 7b ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$) in EtOAc ($4 \mathrm{~cm}^{3}$) was hydrogenated over $\mathrm{Pd}-\mathrm{C}(10 \% ; 25 \mathrm{mg})$ and the resulting mixture was treated with $\mathrm{HCl}-\mathrm{MeOH}\left(2.5 \% ; 4 \mathrm{~cm}^{3}\right)$ to give compounds 9b (26 mg) and $\mathbf{8 b}(39 \mathrm{mg})$, treatment of which with $2,2-$ dimethoxypropane afforded (almost quantitatively) the acetonides 10 b and 11 b , respectively.

Compound 10b, m.p. 267-269 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}+30.24$ (c 0.615, CHCl_{3}) (lit., ${ }^{10}$ m.p. $268-270{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}+31.2\left(c 0.52, \mathrm{CHCl}_{3}\right)$ (Found: C, 74.8; $\mathrm{H}, 11.2 . \mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 74.81 ; \mathrm{H}$, $11.18 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1230(\mathrm{OH}), 1050$ and $1020 ;$ $m / z 489\left(\mathrm{M}^{+}-\mathrm{Me}\right), 419\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}\right), 185,156$ and 99; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.65(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.87(3 \mathrm{H}, \mathrm{d}, J 7.0,24-$ $\mathrm{Me}), 0.89(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 0.91(9 \mathrm{H}, \mathrm{s}, 25-\mathrm{Me}, 26-\mathrm{H}, 27-\mathrm{H}), 0.97$ (3 $\mathrm{H}, \mathrm{d}, J 6.5,21-\mathrm{H}), 1.34(6 \mathrm{H}, \mathrm{s}$, acetonide), $3.62(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H})$, $3.66(1 \mathrm{H}, \mathrm{d}, J 9.3 ; 23-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{d}, J 9.3,22-\mathrm{H})$ and $4.08(1 \mathrm{H}$, $\mathrm{m}, 6 \beta-\mathrm{H})$.

Compound 11b, m.p. $211.5-213^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}+6.00$ (c 0.55 , CHCl_{3}) (Found: C, 75.9; H, 11.3. $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.14$; $\mathrm{H}, 11.18 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{OH})$ and $1040(\mathrm{C}-\mathrm{O}) ; m / z$ $503\left(\mathrm{M}^{+}-1\right), 489\left(\mathrm{M}^{+}-\mathrm{Me}\right), 471\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right), 419$ $\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{13}\right), 185,156$ and $99 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.64$ ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}$), 0.75 ($3 \mathrm{H}, \mathrm{d}, J 7.0,24-\mathrm{Me}$), 0.91 ($3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}$), 0.95 ($9 \mathrm{H}, \mathrm{s}, 25-\mathrm{Me}, 26-\mathrm{H}, 27-\mathrm{H}), 1.34$ and $1.36(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), $3.62(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H})$, $3.63(1 \mathrm{H}, \mathrm{dd}, J 7.0,8.9,23-\mathrm{H})$, $3.97(1 \mathrm{H}, \mathrm{d}, J 7.0,22-\mathrm{H})$ and $4.06(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H})$.
(22R,23R)-22,23-Isopropylidenedioxy-24-methylene-5 β-cho-lestane- $3 \alpha, 6 \alpha$-diol 14a.-A stirred mixture of compound 7a (60 $\mathrm{mg}, 0.1 \mathrm{mmol}$), PPTS (45 mg) and $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux for 2.5 h . After work-up the residue was chromatographed (light petroleum-EtOAc 1.5:1) to afford the title compound $14 \mathrm{a}(42 \mathrm{mg}, 80 \%$), colourless needles, m.p. 189$190{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+3.78\left(c 0.318, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 75.4 ; \mathrm{H}, 10.8$. $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 75.49 ; \mathrm{H}, 10.73 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3350(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{C})$ and $1050(\mathrm{C}-\mathrm{O}) ; m / z 473\left(\mathrm{M}^{+}-\mathrm{Me}\right), 419$ $\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9}\right), 169,140$ and $125 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.63(3 \mathrm{H}$, $\mathrm{s}, 18-\mathrm{H}), 0.92(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.00(3 \mathrm{H}, \mathrm{d}, J 5.8,21-\mathrm{H}), 1.07(3 \mathrm{H}, \mathrm{d}$, $J 6.7,26-\mathrm{H}), 1.10(3 \mathrm{H}, \mathrm{d}, J 6.7,27-\mathrm{H}), 1.41(6 \mathrm{H}, \mathrm{s}$, acetonide $), 3.67$ ($1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{d}, J 8.9,22-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}), 4.20$ ($1 \mathrm{H}, \mathrm{d}, J 8.9,23-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$ and $5.08(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$.
(22R,23R)-22,23-Isopropylidenedioxy-25-methyl-24-
methylene- 5β-cholestane- $3 \alpha, 6 \alpha$-diol 14b.-In the same manner as described for the preparation of compound 14a, compound $7 \mathrm{~b}(50 \mathrm{mg}, 0.08 \mathrm{mmol})$, PPTS (70 mg) and $\mathrm{Bu} \mathrm{OH}\left(3 \mathrm{~cm}^{3}\right)$ were
used. Work-up afforded compound 14 b ($35 \mathrm{mg}, 82.3 \%$), as colourless needles, m.p. $192-193.5^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{28}+10.71$ (c 1.68, CHCl_{3}) (Found: $\mathrm{C}, 73.8 ; \mathrm{H}, 10.9 . \mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , $73.80 ; \mathrm{H}, 10.84 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{C})$ and $1030(\mathrm{C}-\mathrm{O}) ; m / z 503\left(\mathrm{M}^{+}+1\right), 487\left(\mathrm{M}^{+}-\mathrm{Me}\right), 419\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 183,154$ and $139 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.60(3 \mathrm{H}, \mathrm{s}, 18-$ H), $0.92(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.01(3 \mathrm{H}, \mathrm{d}, J 5.6,21-\mathrm{H}), 1.10(9 \mathrm{H}, \mathrm{s}, 25-$ $\mathrm{Me}, 26-\mathrm{H}, 27-\mathrm{H}), 1.38$ and $1.45(2 \times 3 \mathrm{H}, 2 \mathrm{~s}$, acetonide), $3.68(1$ $\mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{d}, J 9.0,22-\mathrm{H}), 4.11(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}), 4.28$ $(1 \mathrm{H}, \mathrm{d}, J 9.0,23-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$ and $5.24(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$.
(22R,23R)-3 2 ,22,23-Trihydroxy-24-methylene- 5α-cholestan-6-one 15a.-A solution of compound $14 \mathrm{a}(80 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was treated with PDC $(100 \mathrm{mg})$ at room temp. for 2.5 h , after which the mixture was diluted with dry diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture filtered. After removal of solvent, the residue was dissolved in $\mathrm{HCl}-\mathrm{MeOH}\left(2.5 \% ; 10 \mathrm{~cm}^{3}\right)$ and the solution set aside for 48 h and then worked up. On chromatography (light petroleum-EtOAc $1: 1.5$) compound 15a was obtained ($30 \mathrm{mg}, 41 \%$), colourless needles, m.p. 186-187 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{28}-7.18\left(c 0.39, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1650(\mathrm{C}=\mathrm{C})$ (Found: $\mathrm{C}, 74.5 ; \mathrm{H}, 10.6 . \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{4} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}$ requires C , 74.54; H, 10.39\%); m/z $447\left(\mathrm{M}^{+}+1\right), 446\left(\mathrm{M}^{+}\right), 429\left(\mathrm{M}^{+}-\right.$ $\mathrm{OH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.62(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.73(3 \mathrm{H}, \mathrm{s}, 19-$ H), $0.95(3 \mathrm{H}, \mathrm{d}, J 6.2,21-\mathrm{H}), 1.08(3 \mathrm{H}, \mathrm{d}, J 6.7,26-\mathrm{H}), 1.10(3 \mathrm{H}$, $\mathrm{d}, J 6.7,27-\mathrm{H}), 2.30(1 \mathrm{H}$, dd, $J 4.3$ and $12.7,7 \beta-\mathrm{H}), 2.72(1 \mathrm{H}, \mathrm{t}, J$ $7.7,5 \alpha-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{d}, J 8.0,22-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{d}, J 8.0,23-\mathrm{H}), 4.17$ $\left(1 \mathrm{H}, W_{\frac{1}{2}} 8 \mathrm{~Hz}, 3 \beta-\mathrm{H}\right), 5.03(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$ and $5.06(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$.
(22R,23R)-3 $, 22,23-T r i h y d r o x y-24-m e t h y l e n e-25-m e t h y l-5 \alpha-$ cholestan-6-one 15b.-In the same manner as described for the preparation of compound $15 a, 14 b(80 \mathrm{mg}, 0.16 \mathrm{mmol})$, was treated with PDC (100 mg) followed by acid treatment to give compound $\mathbf{1 5 b}$ ($28 \mathrm{mg}, 38 \%$), colourless needles (EtOAc), m.p. $171-172^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1650(\mathrm{C}=\mathrm{C}) ; m / z$ $461\left(\mathrm{M}^{+}+1\right), 460\left(\mathrm{M}^{+}\right)$and $443\left(\mathrm{M}^{+}-\mathrm{OH}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.61(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.73(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 0.96(3 \mathrm{H}, \mathrm{d}, J 6.4$, $21-\mathrm{H}), 1.11(9 \mathrm{H}, \mathrm{s}, 25-\mathrm{Me}, 26-\mathrm{H}, 27-\mathrm{H}), 2.30(1 \mathrm{H}, \mathrm{dd}, J 4.4,12.8$, $7 \beta-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{t}, J 7.9,5 \alpha-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{d}, J 8.0,22-\mathrm{H}), 4.06$ ($1 \mathrm{H}, \mathrm{d}, J 8.0,23-\mathrm{H}), 4.15\left(1 \mathrm{H}, W_{\frac{1}{2}} 8 \mathrm{~Hz}, 3 \beta-\mathrm{H}\right), 5.08(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$ and $5.15(1 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$.
(22R,23R)-22,23-Isopropylidenedioxy- $3 \alpha, 6 \alpha$-bismethoxy-methyl-24-methyl-24-methylene-5 β-cholane 17 .-To a solution of the acetonide $\mathbf{4 b}(566 \mathrm{mg}, 1 \mathrm{mmol})$ in THF ($50 \mathrm{~cm}^{3}$) under argon at $-78^{\circ} \mathrm{C}$ was added methyllithium ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in EtOEt; $2 \mathrm{~cm}^{3}$). The mixture was stirred for 1 h , and then warmed to room temp. and quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Work-up afforded the crude product 16 which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.43 \mathrm{~cm}^{3}, 3 \mathrm{mmol}\right)$, and DMAP $(5 \mathrm{mg})$ were added. The stirred mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}\left(0.12 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}\right)$ added dropwise. The mixture was stirred at room temp. for 4 h after which it was worked up and the residue chromatographed (light petroleum-EtOAc $10: 1$) to furnish compound $17(482 \mathrm{mg}, 87 \%)$ as an amorphous solid; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{C})$ (Found: C, $72.3 ; \mathrm{H}, 10.1$. $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{O}_{6}$ requires $\mathrm{C}, 72.22 ; \mathrm{H}, 10.28 \%$); m/z $548\left(\mathrm{M}^{+}\right), 533$ $\left(\mathrm{M}^{+}-\mathrm{Me}\right), 507\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 487\left(\mathrm{M}^{+}-\mathrm{MeOCH}_{2} \mathrm{OH}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.64(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 0.92(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}), 1.00$ ($3 \mathrm{H}, \mathrm{d}, J 5.6,21-\mathrm{H}$), 1.41 ($6 \mathrm{H}, \mathrm{s}$, acetonide), $1.86(3 \mathrm{H}, \mathrm{s}, 25-\mathrm{H}$), $3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H}), 3.85$ ($1 \mathrm{H}, \mathrm{d}, J 9.0,22-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{m}, 6 \beta-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{d}, J 9.0,23-$ $\mathrm{H}), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.70$ and $4.72($ each 1 H , each d, J 6.8, $\left.\mathrm{OCH}_{2} \mathrm{O}\right)$ and $4.94(2 \mathrm{H}, \mathrm{s}, 28-\mathrm{H})$.
under reflux for 2 h . After work-up the resulting compound 18 dissolved in EtOAc ($10 \mathrm{~cm}^{3}$) was hydrogenated over $\mathrm{Pd}-\mathrm{C}$ $(10 \% ; 10 \mathrm{mg})$ for 2 h at room temp. The catalyst was filtered off and the solvent removed. Chromatography on silica gel (light petroleum-EtOAc, 1:2) afforded compound 19 ($74 \mathrm{mg}, 80 \%$), m.p. $199-200^{\circ} \mathrm{C}$ (needles, EtOAc-hexane) (lit., ${ }^{10} \mathrm{~m} . \mathrm{p} .202-$ $203{ }^{\circ} \mathrm{C}$). The ${ }^{1} \mathrm{H}$ NMR, MS and IR data were identical with those reported. ${ }^{10}$

Acknowledgements

This project was supported by the National Science Foundation of China.

References

1 (a) (Reviews) S. C. Chen, Chem. Can., 1983, 35, 13; K. Mori, J. Synth. Org. Chem. Jpn., 1985, 43, 849; H. Singh and T. R. Bhardwaj, Indian J. Chem., Sect. B, 1986, 25, 989 ; (b) T. Kametani, T. Katoh, M. Tsubuki and T. Honda, J. Am. Chem. Soc., 1986, 108, 7055; (c) T. Kametani, T. Katch, J. Fujio, I. Nogiwa, M. Tsubuki and T. Honda, J. Org. Chem., 1988, 53, 1982; (d) S. Takatsuto, J. Chem. Soc., Perkin Trans. 1, 1986, 1833; (e) W. S. Zhou and W.S. Tian, Tetrahedron, 1987, 43, 3705; (f) T. Kametani, M. Kigawa, M. Tsubuki and T. Honda, J. Chem. Soc., Perkin Trans. 1, 1988, 1503; (g) W. S. Zhou, B. Jiang and X. F. Pan, J. Chem. Soc., J. Chem. Soc., Chem. Commun., 1989, 612; W. S. Zhou, B. Jiang and X. F. Pan, Tetrahedron, 1990, 46, 3173; (h) W. S. Zhou and C. S. Ge, Sci. Sin. (Engl. Ed.), Ser. B, 1989, 32, 1290; (i) T. Kametani, K. Keino, M. Kigawa, M. Tsubuki and T. Honda, Tetrahedron Lett., 1989, 30, 3141; (j) W. S. Zhou, Y. P. Zhou and B. Jiang, Synthesis, 1989, 426; (k) T. Honda, K. Keino and M. Tsubuki, J. Chem. Soc., Chem. Commun., 1990, 650; (l) T. G. Back, K. Brunner, M. V. Krishna and E. K. Y. Lai, Can. J. Chem., 1989, 67, 1032; T. G. Back and M. V. Krishna, J. Org. Chem., 1991, 56, 454; (m) Z. W. Shen and W. S. Zhou, J. Chem. Soc., Perkin Trans. 1, 1990, 1765; (n) V. A. Khripach, V. N. Zhabinskiy and V. K. Olkhovick, Tetrahedron Lett., 1990, 31, 4937; (o) T. G. Back, P. G. Blazecka and M. V. Krishna, Tetrahedron Lett., 1991, 32, 4817; (p) W. S. Zhou and Z. W. Shen, J. Chem. Soc., Perkin Trans. 1, 1991, 2827.

2 M. J. Thompson, W. J. Meudt, N. B. Mandava, S. R. Dutky, W. R. Lushy and D. W. Spaulding, Steroids, 1982, 39, 89.
3 H. L. Kwong, C. Sorato, Y. Ogino, H. Chen and K. B. Sharpless, Tetrahedron Lett., 1990, 31, 2999.
4 L. Q. Sun, W. S. Zhou and X. F. Pan, Tetrahedron Asymmetry, 1991, 2, 973.
5 (a) Preliminary communication, W. S. Zhou, L. F. Huang, L. Q. Sun and X. F. Pan, Tetrahedron Lett., 1991, 32, 6745; (b) the further high selectivity also occurs in using 9-O-(9'-phenanthryl) ethers of dihydroquinidine as the chiral ligand, see K. B. Sharpless, W. Amberg, M. Beller, H, Chen, J. Hartung, Y. Kawanami, D. Lübben, E. Manoury, Y. Ogino, T. Shibata and T. Ukita, J. Org. Chem., 1991, 56, 4585; Y. Ogino, H. Chen, E. Manowy, T. Shibata, M. Beller, D. Lübben and K. B. Sharpless, Tetrahedron Lett., 1991, 32, 5761.
6 M. Minato, K. Yamamoto and J. Tsuji, J. Org. Chem., 1990, 55, 766.
7 D. L. Comins and J. J. Herrick, Tetrahedron Lett., 1984, 25, 1321.
8 W.S. Zhou, L. Q. Sun and X. F. Pan, Chinese Chemical Letters, 1991, 2, 929.
9 H. Monti, G. Léandri, K. Klos-Ringuet and C. Corriol, Synth. Commun., 1983, 13, 1021.
10 W. S. Zhou and L. F. Huang, Tetrahedron, 1992, 48, 1837.
11 T. Yakata and N. Takahashi, Jpn. Kokai Tokkyo Koho, JP 63216896 (88 216 896) (Chem. Abstr. 111, 4452e).
12 K. Mori and T. Takeuchi, Liebigs Ann. Chem., 1988, 815.
13 J. S. Yadav and S. V. Mysorekar, Synth. Commun., 1989, 19, 1057.
14 (a) S. Takatsuto, N. Yazawa and N. Ikekawa, Phytochemistry, 1984, 23, 525; (b) T. Kametani, T. Katoh, M. Tsubuki and T. Honda, Chem. Pharm. Bull., 1987, 35, 2334; (c) W. S. Zhou, H. Q. Zhou and Z. Q. Wang, J. Chem. Soc., Perkin Trans. 1, 1990, 2281; (d) W. S. Zhou, H. Q. Zhou, G. Roussi and Z. Q. Wang, Synthesis, 1990, 1073; (e) Z. W. Shen and W. S. Zhou, Chung-kuo K'o Hsueh (Chin. Ed.) (Ser. B), 1991, 1023 (in Chinese).
(22R,23R)-22,23-Isopropylidenedioxy-24,24-dimethyl-5 β -cholane- $3 \alpha, 6 \alpha$-diol 19.-A stirred mixture of compound 17 (110 $\mathrm{mg}, 0.2 \mathrm{mmol})$, PPTS $(100 \mathrm{mg})$ and $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}\left(5 \mathrm{~cm}^{3}\right)$ was heated

Paper 2/00036I
Received 6th January 1992
Accepted 19th March 1992

